博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
四十二 常用内建模块 collections
阅读量:6687 次
发布时间:2019-06-25

本文共 2819 字,大约阅读时间需要 9 分钟。

collections是Python内建的一个集合模块,提供了许多有用的集合类。

namedtuple

我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:

>>> p = (1, 2)

但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。

定义一个class又小题大做了,这时,namedtuple就派上了用场:

>>> from collections import namedtuple>>> Point = namedtuple('Point', ['x', 'y'])>>> p = Point(1, 2)>>> p.x1>>> p.y2

namedtuple是一个函数,它用来创建一个自定义的tuple对象,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素。

这样一来,我们用namedtuple可以很方便地定义一种数据类型,它具备tuple的不变性,又可以根据属性来引用,使用十分方便。

可以验证创建的Point对象是tuple的一种子类:

>>> isinstance(p, Point)True>>> isinstance(p, tuple)True

类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

# namedtuple('名称', [属性list]):Circle = namedtuple('Circle', ['x', 'y', 'r'])

deque

使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

>>> from collections import deque>>> q = deque(['a', 'b', 'c'])>>> q.append('x')>>> q.appendleft('y')>>> qdeque(['y', 'a', 'b', 'c', 'x'])

deque除了实现list的append()pop()外,还支持appendleft()popleft(),这样就可以非常高效地往头部添加或删除元素。

defaultdict

使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict

>>> from collections import defaultdict>>> dd = defaultdict(lambda: 'N/A')>>> dd['key1'] = 'abc'>>> dd['key1'] # key1存在'abc'>>> dd['key2'] # key2不存在,返回默认值'N/A'

注意默认值是调用函数返回的,而函数在创建defaultdict对象时传入。

除了在Key不存在时返回默认值,defaultdict的其他行为跟dict是完全一样的。

OrderedDict

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。

如果要保持Key的顺序,可以用OrderedDict

>>> from collections import OrderedDict>>> d = dict([('a', 1), ('b', 2), ('c', 3)])>>> d # dict的Key是无序的{
'a': 1, 'c': 3, 'b': 2}>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])>>> od # OrderedDict的Key是有序的OrderedDict([('a', 1), ('b', 2), ('c', 3)])

注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:

>>> od = OrderedDict()>>> od['z'] = 1>>> od['y'] = 2>>> od['x'] = 3>>> list(od.keys()) # 按照插入的Key的顺序返回['z', 'y', 'x']

OrderedDict可以实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的Key:

from collections import OrderedDictclass LastUpdatedOrderedDict(OrderedDict):    def __init__(self, capacity):        super(LastUpdatedOrderedDict, self).__init__()        self._capacity = capacity    def __setitem__(self, key, value):        containsKey = 1 if key in self else 0        if len(self) - containsKey >= self._capacity:            last = self.popitem(last=False)            print('remove:', last)        if containsKey:            del self[key]            print('set:', (key, value))        else:            print('add:', (key, value))        OrderedDict.__setitem__(self, key, value)

Counter

Counter是一个简单的计数器,例如,统计字符出现的个数:

>>> from collections import Counter>>> c = Counter()>>> for ch in 'programming':...     c[ch] = c[ch] + 1...>>> cCounter({
'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})

Counter实际上也是dict的一个子类,上面的结果可以看出,字符'g''m''r'各出现了两次,其他字符各出现了一次。

小结

collections模块提供了一些有用的集合类,可以根据需要选用。

参考源码

转载于:https://www.cnblogs.com/wuxl360/p/5498771.html

你可能感兴趣的文章
IPFS 服务的Python访问
查看>>
DllMain详解
查看>>
Class bytes found but defineClass()failed for error when deploying EAR
查看>>
IIS7.0安装的FTP建账号
查看>>
spring --理解
查看>>
前台中文数据后台achieveRequest().getParameter获取乱码问题
查看>>
sed工具扩展学习
查看>>
db4o 参考资料
查看>>
mysql生产环境___主从同步修复案例
查看>>
对Controller的单元测试
查看>>
人工智能无法挑战人心
查看>>
移动web 1px边框解决方案
查看>>
centos7.4 Rsync配置和触发备份
查看>>
Oracle12c 安装
查看>>
DX11之D3DXMatrixIdentity 函数
查看>>
四项重要标准 让金融机构评选合适的DDoS防护提供商
查看>>
iOS开发的插件和工具
查看>>
Centos+Sersync+inotify实时同步数据文件(一)
查看>>
Windows Live Writer发布多个日志
查看>>
python 线程
查看>>